Найдите 27-кратную сумму значений в точках экстремума функции у=4х3+8х2−15х+15?

Найдите 27-кратную сумму значений в точках экстремума функции у=4х3+8х2−15х+15?
Гость
Ответ(ы) на вопрос:
Гость
Находим производную функции у=4х³+8х²−15х+15. y' = 12x²+16x-15. Производная функции y' существует при любом x. Приравниваем нулю и находим критические точки. 12x²+16x-15 = 0. Квадратное уравнение, решаем относительно x: Ищем дискриминант: D=16^2-4*12*(-15)=256-4*12*(-15)=256-48*(-15)=256-(-48*15)=256-(-720)=256+720=976;Дискриминант больше 0, уравнение имеет 2 корня: x₁=(√976-16)/(2*12)=(√976-16)/24=√976/24-16/24=4√61/24-(2/3) = √61/6-(2/3) ≈ 0,635042;  x₂=(-√976-16)/(2*12)=(-√976-16)/24=-√976/24-16/24=-4√61/24-(2/3) =  -√61/6-(2/3) ≈ -1,968375.Получили 2 критические точки: x₁ = √61/6-(2/3) ≈ 0,635042;                                                   x₂ = -√61/6-(2/3) ≈ -1,968375. Теперь определяем знаки производной вблизи критических точек. х =   -2    -1,96838      -1.5      0.5      0,635042        1 у' =   1          0            -12       -4              0             13 В точке x₂ производная меняет знак с + на -  это точка максимума функции, в точке x₁ производная меняет знак с - на +  это точка минимума функции. Значения функции в точках экстремума равны: у(макс) = (1/27)(739 + 61√61) ≈  45,01575. у(мин)   = (1/27)(739 - 61√61) ≈  9,724991. Ответ: 27-кратная сумма значений в точках экстремума функции равна  27((1/27)(739 + 61√61) + (1/27)(739 - 61√61)) = 1478.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы