Найдите 3 числа ,образующих убывающую арифмитическую прогрессию ,если их сумма равна 24,а сумма их квадратов 210?
Найдите 3 числа ,образующих убывающую арифмитическую прогрессию ,если их сумма равна 24,а сумма их квадратов 210?
Ответ(ы) на вопрос:
Гость
a + b + c = 24
a^2 + b^2 + c^2 = 210
b = a - k
c = b - k = a - 2k;
a + (a - k) + (a - 2k) = 24
3a - 3k = 24
a - k = 8, но a - k = b!
b = 8;
a^2 + c^2 = 210 - 64
a + c = 16
a^2 + c^2 = 146
a = 16 - c
256 - 32c + c^2 + c^2 = 146
2c^2 - 32c + 110 = 0
c^2 - 16c + 55 = 0
c1 + c2 = 16;
c1 * c2 = 55;
c1 = 5; c2 = 11
11 не подходит, т.к. с < b
c = 5, b = 8;
k = b - c = 3
a = b + k = 11;
11, 8 и 5.
Проверяем: 11 + 8 + 5 = 24
11^2 + 8^2 + 5^2 = 121 + 64 + 25 = 210
Не нашли ответ?
Похожие вопросы