Найдите наибольшее значение выражения (a−c)^2+(b−d)^2, если a^2+b^2=1, c^2+d^2=4

Найдите наибольшее значение выражения (a−c)^2+(b−d)^2, если a^2+b^2=1, c^2+d^2=4
Гость
Ответ(ы) на вопрос:
Гость
Рассмотрим вектора u = (a, b) и v = (c, d), тогда |u|^2 = a^2 + b^2 = 1, |v|^2 = c^2 + d^2 = 4; |u| = 1, |v| = 2. При этом |u - v|^2 = (a - c)^2 + (b - d)^2. В новых терминах задача звучит так: даны два вектора длины 1 и 2. Найти наибольшее возможное значение квадрата длины разности этих векторов. Очевидно, u - v будет вектором максимальной длины, если u и v противоположно направлены, при этом |u - v| = 1 + 2 = 3, а |u - v|^2 = 9. Ответ. 9
Не нашли ответ?
Ответить на вопрос
Похожие вопросы