Найдите объем тела , полученного при вращении прямоугольного тругольника  с  гипотенузой 10 см и острым углом 30(градусов) вокруг меньшего катета.(подробно)

Найдите объем тела , полученного при вращении прямоугольного тругольника  с  гипотенузой 10 см и острым углом 30(градусов) вокруг меньшего катета.(подробно)
Гость
Ответ(ы) на вопрос:
Гость
в результате вращения прямоугольного треугольника образуется КОНУС. В нем: образующая = 10 см, и угол между боковой стороной и основанием = 30°. Рассмотрим ΔSOA ( SA=10 см,  угол А=30°). Так как катет   SO лежит против угла 30°, то он равен половине гипотенузы, то есть 5 см. Дальше нужно найти катет АО. За теоремой Пифагора он равен √75. Теперь нужно найти площать основания. S(осн.) = πr² = (√75)²π = 75π cm². Теперь нужно найти объём: V(конуса) = ⅓ S(осн.)×Н, где Н-высота конуса.    V=⅓ × 75 × 5 =125 см³. Ответ: 125 см³.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы