Найдите остаток деления от 23^34+56^67 на 9

Найдите остаток деления от 23^34+56^67 на 9
Гость
Ответ(ы) на вопрос:
Гость
попробуем установить закономерность в значениях остатков от деления степеней на 9 1) степень 23 23/9=2(5), 23²/9=529/9=58(7), 23³=12167/9=1351(8), если продолжить возводить 23 в степень и вычислять остатки по получится следующая повторяющаяся последовательность остатков a(n)={5,7,8,4,2,1,5,.. а дальше все повторяется} a(1)=a(7)=a(13)=.... a(n)=a(6n+1) - формула повторения ближайшее к 34 число кратное 6 это 30,   34=6*5+4, определим какой у этой степени остаток от деления на 9 а следующие будут повторяться  a(1)=a(6*5+1)=a(31)=5 a(2)=a(32)=7 a(3)=a(33)=8 a(4)=a(34)=4  остаток от деления 23^34 на 9=4 2) аналогично рассуждая можно установить закономерность для 56^67 56/9=6(2), 56²/9=3136/9=348(4),56³/9=175616(8),......   получится повторяющаяся последовательность остатков b(n)={2,4,8,7,5,1,2.....} b(1)=b(7)=b(13),..... b(n)=b(6n+1)  67=6*11+1 b(1)=b(6*11+1)=2 остаток от деления 56^67 равен 2 (23^34+56^67)/9=(23^34/9)+(56^67/9)=x(4)+y(2) где х и у -целые части от деления степеней на 9 суммарный остаток=4+2=6 Ответ 6
Не нашли ответ?
Ответить на вопрос
Похожие вопросы