Найдите первые пятьдесят членов двух арифметических прогрессий 2; 7; 12; ... и 3; 10; 17; ..., которые одинаковы в обеих прогрессиях и найти их сумму. В ответ записать S/100.

Найдите первые пятьдесят членов двух арифметических прогрессий 2; 7; 12; ... и 3; 10; 17; ..., которые одинаковы в обеих прогрессиях и найти их сумму. В ответ записать S/100.
Гость
Ответ(ы) на вопрос:
Гость
первая прогрессия: а1=2, d=5 вторая прогрессия: а1=3, d=7 приравняем n-й член первой прогрессии, k-му второй. 2+5(n-1)=3+7(k-1) n и k ≤50 2+5n-5=3+7k-7 5n-3=7k-4 5n=7k-1 n=(7k-1)/5 чтобы n балл целым, 7k должно заканчиваться на 1 или на 6. подходят следующие значения k: 3,8,13,18,23,28,33,38,43,48 получаем соответствующие им значения получаем следующие k. 38,43 и 48 oтбрасываем, так как соответствующие n >50. итак k= 3,8,13,18,23,28 и 33 Для каждой пары 2+5(n-1)+3+7(k-1)=2+5n-5+3+7k-7=5n+7k-7= вспоминает, что 5n=7k-1 =7k-1+7k-7=14k-8 всего подходящих значений k у нас 7, поэтому S=14( 3+8+13+18+23+28+33) -7*8= 14*126-56=1708 S/100=17,08
Не нашли ответ?
Ответить на вопрос
Похожие вопросы