Найдите тангенс угла наклона касательной проведенной к графику функции f(x)=(x-3)/(x+4) в его точке с абсциссой (-3)
Найдите тангенс угла наклона
касательной проведенной к графику
функции f(x)=(x-3)/(x+4) в его точке с
абсциссой (-3)
Ответ(ы) на вопрос:
Y=f(1)+f'(1)*(x-1)
tg a=f'(1)
Геометрический смысл производной.
Тангенс угла α наклона этой касательной — и есть производная в точке x0.
f'(x)=5x^4-18x^2
f'(1)=-13
f(1)=-5
Y=-5-13(x-1)
tg a=-13
все
Не нашли ответ?
Похожие вопросы