Найдите все значения параметра а, при которых минимальное значение функции f(x)=4x²-4ax+a²-2a+2 на отрезке x∈[0;2] равно 3.

Найдите все значения параметра а, при которых минимальное значение функции f(x)=4x²-4ax+a²-2a+2 на отрезке x∈[0;2] равно 3.
Гость
Ответ(ы) на вопрос:
Гость
Это квадратичная функция! Графиком является парабола, ветви которой направлены вверх!(4>0) Наим. значение функции при х=-b/(2a)-абсцисса вершины!) x=(-(-4a))/(2*4)==a/2 f(a/2)=4*(a/2)^2-4a*(a/2)+a^2-2a+2=a^2-2a^2+a^2-2a+2= =-2a+2-наим. значение -2а+2=3 а=-1/2=0,5
Не нашли ответ?
Ответить на вопрос
Похожие вопросы