Найдите:[latex] \lim_{x \to \(1} \frac{x^{4}-3x+2}{x^{5}-4x+3 } [/latex]Фактически, нужно превратить дробь так, чтобы вместо х можно было подставить 1, и в знаменателе не получался 0. (т.к. на ноль делить нельзя)

Найдите: [latex] \lim_{x \to \(1} \frac{x^{4}-3x+2}{x^{5}-4x+3 } [/latex] Фактически, нужно превратить дробь так, чтобы вместо х можно было подставить 1, и в знаменателе не получался 0. (т.к. на ноль делить нельзя)
Гость
Ответ(ы) на вопрос:
Гость
[latex]lim_{x->1} \frac{x^4-3x+2}{x^5-4x+3}=\\\\lim_{x->1} \frac{(x-1)(x^3+x^2+x-2)}{(x-1)(x^4+x^3+x^2-3)}=\\\\lim_{x->1}\frac{x^3+x^2+x-2}{x^4+x^3+x^2-3}=|\frac{1}{0}|=\infty[/latex], так как неопределенности вида |0/0| или |\frac{\infty}{\infty}| нет, но если хочется поиграться, то [latex]|x=t+1,t=x-1, t->0|=\\\\lim_{t->0} \frac{(t+1)^3+(t+1)^2+(t+1)-3}{(t+1)^4+(t+1)^3+(t+1)^2-3}=\\\\lim_{t->0} \frac{t^3+4t^2+6t}{t^4+5t^3+10t^2+5t}=lim_{t->0} \frac{t^2+4t+6}{t^3+5t^2+10t+5}=\frac{0+0+0}{1+0+0+0}=\infty[/latex];
Не нашли ответ?
Ответить на вопрос
Похожие вопросы