Найти 6 член и разность арифметической прогрессии,если a5+a7=54 ещё a2= 39
Найти 6 член и разность арифметической прогрессии,если a5+a7=54
ещё a2= 39
Ответ(ы) на вопрос:
Гость
1) a5 = 2*5 - 5² = 10 - 25 = -15 (ответ 1) )
2) а6 = 2 + (6 - 1)*(-3) = 2 - 15 = -13 (ответ 3) )
3) d = a6 - a2 / 4 = 14-4 /2 = 2,5 (ответ 1) )
4) S10 = ( 2*2 + 9*4) / 2 * 10 = 200 (ответ 4) )
Повыш.уровень.
1) Прогрессия убывающая, с разностью d= - 0,2
Первый член равен 3,
посчитаем, каким по счету будет член, равный нулю. Обозначим его аn, аn=0.
3 : 0,2 = 15,
тогда по формуле аn = а1 + (n - 1)*d найдем n:
0 = 3 + 15*(- 0,2)
0 = 3 + (16 - 1)*(- 0,2)
значит а16 равен нулю, значит в последовательности 15 положительных членов.
2) а3 = 10 => 10 = a1 + 2d
а7 = 10 => 40 = a1 + 6d получили систему.
Из второго вычтем первое уравнение, получим:
30 = 4d => d = 7,5
a1 = 10 - 2d = 10 - 15 = -5
Тогда а5= a1 + 4d = -5 + 4*7,5 = 25
3) Если рассматривать множество натуральных чисел как арифм.прогрессию с первым членом a1 = 1 и разностью d = 1, то задача сводится к нахождению разности S100 - S39,
S100 = (1+100) /2 * 100 = 5050
S39 = (1+39) /2 * 39 = 780
S100 - S39 = 5050 - 780 = 4270
4) d = а8 - а4 / 4 = 20 - 8 /4 = 12/4 = 3
Тогда по формуле аn = а1 + (n - 1)*d найдем чему равен первый член:
а4 = а1 + (4 - 1)*d
8 = а1 + 3*3
а1 = -1
Тогда 16-й член будет равен: а16 = а1 + (16 - 1)*d = -1 + 15*3 = 44
Т.о. действительно такая ар.прогрессия существует и формула общего члена такая: аn = -1 + 3(n - 1) = -1 + 3n - 3 = 3n - 4
аn = 3n - 4
5) аn = 3n - 1
а1 = 3 - 1 = 2
а2 = 6 - 1 = 5
d = а2 - а1 = 5-2 = 3
S = S54 - S13 = 4401 - 260 = 4141
S54 = (2*2 + 53*3) /2 * 54 = (4 + 159) /2 * 54 = 163 * 54 /2 = 4401
S13 = (2*2 + 12*3) /2 * 13 = (4 + 36) /2 * 13 = 20 * 13 = 260
Ответ: сумма членов прогрессии с 14 по 54 включительно равна 4141.
Не нашли ответ?
Похожие вопросы