Найти производную функции: а)y = -2x sin x б)y = (2x - 3x^2)/(3x-4) в)y = 2(3x^5 - x)^6 Наибольшее и наименьшее значения функции y = (4/x)+x на отрезке [1;3]

Найти производную функции: а)y = -2x sin x б)y = (2x - 3x^2)/(3x-4) в)y = 2(3x^5 - x)^6 Наибольшее и наименьшее значения функции y = (4/x)+x на отрезке [1;3]
Гость
Ответ(ы) на вопрос:
Гость
а)   y= -2xsinx      y'=(-2x)'*sinx+(-2x)sin'x= -2sinx-2xcosx b) y'= 1/(3x-4)²*F F=[(2-6x)(3x-4)-(2x-3x²)(3)]=6x-18x²-8+24x-6x+9x² = -9x²+24x-8 c) y'= 6*2*(3x⁵-x)⁵ *(15x⁴-1) ------------------- 4/x+x  [1;3] y'= -4/x²+1   y'=0   4/x²=1   x²=4    x=2   x= -2 вне отрезка x=1   y=4+1=5 x=2   y=2+2=4 x=3   y=4/3+3 = 4 1/3 наибольшее значение 5    наименьшее  4
Не нашли ответ?
Ответить на вопрос
Похожие вопросы