Найти радіус кола,описаного навколо рівнобічної трапеції, основи якої дорівнють 2 см і 20 см,а бічна сторона 15 см.

Найти радіус кола,описаного навколо рівнобічної трапеції, основи якої дорівнють 2 см і 20 см,а бічна сторона 15 см.
Гость
Ответ(ы) на вопрос:
Гость
Окружность, описанная около равнобокой трапеции АВСД, описана и около треугольника АСД. Найдём высоту трапеции (она же и высота треугольника АСД): Н = √(15² - ((20-2)/2)²) = √(225 - 81) = √ 144 = 12. Найдём длину стороны АС этого треугольника: АС = √(12² + (20-2)/2+2)²) = √(144+ 121) = √265 =  16.27882. Площадь треугольника АСД:  S = (1/2)*20*12 = 120. Радиус описанной окружности равен: R = (abc / 4S) = (15*20* 16.27882) / (4*120) =  4883.646 / 480 = 10.17426. В приложении даётся аналог расчёта радиуса и чертёж для пояснения.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы