Найти точки экстремумы y=2x^2 - 20x+1 б) y=x/5 + 5/x
Найти точки экстремумы y=2x^2 - 20x+1 б) y=x/5 + 5/x
Ответ(ы) на вопрос:
y=2x^2 - 20x + 1 x э R x=0 y=1 y=0 решаем за т.Пифагора Д=в^2 - 4ac = 400 - 4*1*2= 392 корень= (приблизительно) 20 , отсюда x1= 0 x2= 20 y=2*(-x)^2 - 20*(-x)+1= 2x^2+2x+1 - не парная, не непарная y ' = 4x-20 y ' = 0 4x-20=0 4x=20 x=5 чертим - + 5 таблица : x от - бескон.до 5 от 5 до 5 + бесконечности. f ' (x) - 0 + f (x) стрелочка -49 стрелка вверх вниз
Не нашли ответ?
Похожие вопросы