Найти трехзначное число, зная, что число его единиц есть среднее геометрическое числа сотен и десятков, если в его записи поменять местами цифры сотен и десятков и вычесть полученное число из искомого. то разность будет равна 270.

Найти трехзначное число, зная, что число его единиц есть среднее геометрическое числа сотен и десятков, если в его записи поменять местами цифры сотен и десятков и вычесть полученное число из искомого. то разность будет равна 270.
Гость
Ответ(ы) на вопрос:
Гость
Пусть искомое число — аbc. Очевидно, что а,b,c могут равняться числам от 0 до 9; ОДЗ: а,b,c є [0;9] Мы знаем, что с — среднее геометрическое а и b, следовательно c равняется корню из произведения а на b; с=sqrt a*b   Также мы знаем, что по условию: bаc–аbc=270. Опустим в данном примере операцию с единицами (с–с=0). Тогда bа–аb=27. Выразим одну неизвестную величину через другую: 27+аb=bа Далее начинаем методом подбора из ОДЗ находить доступные комбинации. Таковых всего пять: а=5; b=8 а=4; b=7 а=3; b=6 а=2; b=5 а=1; b=4 Таким образом, нам доступно пять комбинаций чисел сотен и десятков. Теперь возвратимся к условию, касающемуся числа единиц. Сказано, что оно равно корню из произведения а на b. Из всех перечисленных вариантов, корень можно извлечь только из произведения чисел в последней комбинации. с= sqrt 1*4=2 В итоге получаем: а=1; b=4; с=2 Проверим, выполняется ли начальное условие: bac–abc=270 412–142=270 — условие выполняется. Ответ: Искомое число — 142.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы