Найти значения параметра a, при которых функция y=(a-12)x³+3(a-12)x²+6x+7 монотонно возрастает на всей числовой оси.

Найти значения параметра a, при которых функция y=(a-12)x³+3(a-12)x²+6x+7 монотонно возрастает на всей числовой оси.
Гость
Ответ(ы) на вопрос:
Гость
Вроде как никакая функция с квадратом (с любой натуральной четной степенью) не может гарантированно монотонно возрастать. Значит, 3(a-12)=0. Решение очевидно: a=12. Теперь проверяем, то ли получилось: получилась линейная возрастающая функция, ура.
Гость
a-12=t.  Тогда f(x)=tx³+3tx²+6x+7 Возьмем производную: f'(x)=3tx²+6tx+6 Достаточное условие возрастания на интервале: производная всюду на интервале положительна, хотя в некоторых точках может быть и равна нулю. В данном случае это означает то, что неравенство 3tx²+6tx+6≥0 должно быть верным при любом x.  Пусть t=0 (a=12), тогда равна 6 и всегда положительна. а=12 нам подходит. Теперь нужно рассмотреть два случая. Если t>0, то ветви параболы направлены вверх и неравенство будет верно для любого x при D≤0. D=36t(t-2) D≤0 при 0
Не нашли ответ?
Ответить на вопрос
Похожие вопросы