Нужно составить оригинальное тригонометрическое неравенство решаемое обощенным методом интервалов. И решение к этому неравенству. Заранее спасибо за качественный ответ.

Нужно составить оригинальное тригонометрическое неравенство решаемое обощенным методом интервалов. И решение к этому неравенству. Заранее спасибо за качественный ответ.
Гость
Ответ(ы) на вопрос:
Гость
Найти все значения х из промежутка [0;π]  удовлетворяющие  неравенству sin2x-cosx+√2sinx>1/√2 Решение: 2√2sinxcosx-√2cosx+2sinx-1>0 √2cosx(2sinx-1)+(2sinx-1)>0 (2sinx-1)(√2cosx+1)>0 2√2(sinx-1/2)(cosx+1/√2)>0 sinx=1/2⇒x=π/6 U x=5π/6 cosx=-1/√2⇒x=3π/4          _                 +                _                  + [0]----------[π/6]--------[3π/4]---------[5π/6]----------[π] Ответ х∈(π/6;3π/4) или (5π/6;π]
Не нашли ответ?
Ответить на вопрос
Похожие вопросы