Один экскаватор вырывает котлован на 10 дней быстрее другого. За сколько дней вырывает котлован каждый из экскаваторов, если, работая вместе, они вырывают котлован за 12 дней.

Один экскаватор вырывает котлован на 10 дней быстрее другого. За сколько дней вырывает котлован каждый из экскаваторов, если, работая вместе, они вырывают котлован за 12 дней.
Гость
Ответ(ы) на вопрос:
Гость
Решение: Обозначим объём работы при рытье котлована за 1(единицу), а количество дней за которое вырывает один экскаватор котлован  за (х) дней, тогда второй экскаватор вырывает котлован за (х-10) дней Производительность работы первого экскаватора за один день равна: 1/х второго экскаватора 1/(х-10) А так как работая вместе экскаваторы вырывают котлован за 12 дней, составим уравнение: 1 : [1/(х)+1/(х-10)]=12 1 : [(х-10*1+ (х)*1)/(х*(х-10)]=12   -здесь мы привели к общему знаменателю 1:  [(х-10+х)/(х²-10х)]=12 (х²-10х)/(2х-10)=12 х²-10х=12*(2х-10) х²-10х=24х-120 х²-10х-24х+120+0 х²-34х+120=0 х1,2=(34+-D)/2*1 D=√(34²-4*1*120)=√(1156-480)=√676=26 х1,2=(34+-26)/2 х1=(34+26)/2=30 (дней-первый экскаватор вырывает котлован х2=(34-26)/2=4 - не соответствует условию задачи Второй экскаватор вырывает котлован за (х-10) или: 30-10=20 (дней) Ответ: Первый экскаватор вырывает котлован за 30дней, второй экскаватор за 20 дней
Не нашли ответ?
Ответить на вопрос
Похожие вопросы