Окружность,заданная уравнением x^2 + y^2=12, пересекает положительную полуось Ox в точке М , точка K лежит на окружности , её абцисса равна -2 . найдите площадь треугольника OKM

Окружность,заданная уравнением x^2 + y^2=12, пересекает положительную полуось Ox в точке М , точка K лежит на окружности , её абцисса равна -2 . найдите площадь треугольника OKM
Гость
Ответ(ы) на вопрос:
Гость
См. рисунок в приложении Точка M имеет абсциссу х=√(12) =2√3 ординату у=0    Точка  К имеет асбциссу х=-2   ордината у находится из уравнения у²=12-4 у=√8 у=2√2 точка O (0;0) ОМ имеет длину 2√3 ОМ- радиус вектор ОМ=2√3 ОМ=ОК=2√3 tg∠КОМ=-√2 ( так как тангенс смежного с ним угла α равен √2    tg α=2√2/2=√2) cos²∠КОМ= 1/(1+tg²∠KOM)=1/3 sin²∠КОМ=1-cos²∠KOM=1-(1/3)=2/3 sin ∠KOM=√(2/3) S=ОК·ОМ· sin ∠KOM/2= (2√3)²·(√(2/3))/2=2√6 кв. ед 
Не нашли ответ?
Ответить на вопрос
Похожие вопросы