Определить, при каких значениях a и b плоскости 2x-y + 3z-1 = 0, x + 2y-z + b = 0 и x + ay-6z + 10 = 0 имеют одну общую точку
Определить, при каких значениях a и b плоскости 2x-y + 3z-1 = 0, x + 2y-z + b = 0 и x + ay-6z + 10 = 0 имеют одну общую точку
Ответ(ы) на вопрос:
Гость
2x-y + 3z-1 = 0
x + 2y-z + b = 0
x + ay-6z + 10 = 0
матрица А:
2 -1 3
1 2 -1
1 а -6
Главный определитель:
∆ = 2 • (2 • (-6)- • (-1))-1 • ((-1) • (-6)- • 3)+1 • ((-1) • (-1)-2 • 3) = -35
Если определитель не 0, то решение у системы одно => они проходят через одну точку.
При а≠7 для любого b есть одна точка пересечения плоскостей.
Не нашли ответ?
Похожие вопросы