Основание AD трапеции ABCD с прямым углом А равно 12 см, AB=5cм, угол D=45градусов. Найдите длины векторов: а)BD, б)CD, в)AC

Основание AD трапеции ABCD с прямым углом А равно 12 см, AB=5cм, угол D=45градусов. Найдите длины векторов: а)BD, б)CD, в)AC
Гость
Ответ(ы) на вопрос:
Гость
А) BD ищется из треугольника ABD по теореме Пифагора: BD^2 = AB^2 + AD^2, откуда BD = 13 см. Б) проведём высоту CH к основанию AD. Тогда ABCH - прямоугольник, AH = BC и CH = AB = 5 см. Треугольник CDH - прямоугольный с прямым углом CHD. Причём так как угол D равен 45 градусам, то угол DCH = 45 градусов в силу того, что сумма острых углов прямоугольного треугольника равна 90 градусам. Значит, треугольник CDH - равнобедренный. CH = DH = 5 см. Ищем CD по теореме Пифагора: CD^2 = CH^2 + DH^2, откуда CD = 5*sqrt(2) см. (Sqrt - это квадратный корень). 3) Треугольник ACH прямоугольный с прямым углом AHC. AH = AD - DH = 12 - 5 = 7 см. Ищем AC по теореме Пифагора: AC^2 = AH^2 + CH^2, откуда AC = sqrt(74) см.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы