Основание AD трапеции ABCD с прямым углом А равно 12 см, AB=5cм, угол D=45градусов. Найдите длины векторов: а)BD, б)CD, в)AC
Основание AD трапеции ABCD с прямым углом А равно 12 см, AB=5cм, угол D=45градусов. Найдите длины векторов: а)BD, б)CD, в)AC
Ответ(ы) на вопрос:
Гость
А) BD ищется из треугольника ABD по теореме Пифагора:
BD^2 = AB^2 + AD^2, откуда BD = 13 см.
Б) проведём высоту CH к основанию AD. Тогда ABCH - прямоугольник, AH = BC и CH = AB = 5 см.
Треугольник CDH - прямоугольный с прямым углом CHD.
Причём так как угол D равен 45 градусам, то угол DCH = 45 градусов в силу того, что сумма острых углов прямоугольного треугольника равна 90 градусам.
Значит, треугольник CDH - равнобедренный. CH = DH = 5 см.
Ищем CD по теореме Пифагора:
CD^2 = CH^2 + DH^2, откуда CD = 5*sqrt(2) см. (Sqrt - это квадратный корень).
3) Треугольник ACH прямоугольный с прямым углом AHC.
AH = AD - DH = 12 - 5 = 7 см.
Ищем AC по теореме Пифагора:
AC^2 = AH^2 + CH^2, откуда AC = sqrt(74) см.
Не нашли ответ?
Похожие вопросы