Основанием пирамиды MABCD служит ромб ABCD, AC = 8, BD = 6. Высота пирамиды равна 1. Все двугранные углы при основании равны. Найдите площадь полной поверхности пирамиды.

Основанием пирамиды MABCD служит ромб ABCD, AC = 8, BD = 6. Высота пирамиды равна 1. Все двугранные углы при основании равны. Найдите площадь полной поверхности пирамиды.
Гость
Ответ(ы) на вопрос:
Гость
Если провести апофемы (высоты боковых граней), то из оснований этих апофем высота пирамиды "видна" под одинаковым углом. Это означает, что 1. все апофемы равны. 2. проекция апофемы на основание - это радиус вписанной окружности (в основание). Ромб в основании разбивается диагоналями на четыре прямоугольных треугольника с катетами 3 и 4, поэтому сторона ромба равна 5, а высота к гипотенузе такого треугольника, - то есть радиус вписанной окружности - равна 3*4/5 = 12/5. Итак, проекция апофемы на основание равна 2,4 а высота пирамиды 1. Отсюда апофема равна корень(1^2 + (12/5)^2) = 13/5. Периметр ромба 5*4 = 20, площадь боковой поверхности (1/2)*20*13/5 = 26. Площадь основания 6*8/2 = 24, складываем, получаем  Ответ 50   Между прочим, Sosn/Sboc = 12/13, это косинус угла между боковой гранью (любой) и основанием. Это можно было и сразу понять, если рассмативать основание как сумму ортогональных проекций боковых граней. (Треугольник, образованный апофемой, её проекцией на основание, и высотой пирамиды, подобен треугольнику со сторонами 5,12,13, то есть косинус угла между гранью и основанием 12/13)
Не нашли ответ?
Ответить на вопрос
Похожие вопросы