Периметр четырехугольника, описанного около окружности, равен 24, две его стороны равны 5 и 6. Найдите большую из оставшихся сторон

Периметр четырехугольника, описанного около окружности, равен 24, две его стороны равны 5 и 6. Найдите большую из оставшихся сторон
Гость
Ответ(ы) на вопрос:
Гость
Четырехугольник можно описать около окружности когда сумма противоположных сторон равны Четырехугольник АВСД, АВ+СД=ВС+АД, те. сумма двух противоположных сторон = периметр/2=24/2=12, сумма приведенных сторон=5+6=11, значит стороны не противоположные, пусть АВ=5, а ВС=6, тогда СД=12-5=7, АД=12-6=6 большая сторона=7
Не нашли ответ?
Ответить на вопрос
Похожие вопросы