Периметр равнобедренной трапеции равен 200 см а площадь 2000 см в квадрате сколько сантиметров составляет расстояние от точки пересечения диагоналей до ее меньшего основания если известно что в нее можно вписать окружность

Периметр равнобедренной трапеции равен 200 см а площадь 2000 см в квадрате сколько сантиметров составляет расстояние от точки пересечения диагоналей до ее меньшего основания если известно что в нее можно вписать окружность
Гость
Ответ(ы) на вопрос:
Гость
пусть боковые стороны-х, меньшее верхнее основание-а, нижнее-в т.к. в трапецию можно вписать окружность, то справедливо равенство, что х+х=а+в, т.к. Р=200, то 100=100, т.к. х+х=100, и а+в=100, т.е. х=50, а+в=100 применим известную площадь. S=h*(а+в)/2, h=S*2/(а+в)=40 высота =40, боковая сторона 50.  опустим высоты из верхнего основания. по бокам образовались треугольники, найдем их основания-по Т. Пифагора=30 (треугольники со сторонами 30,40,50) нижнее основание в=30+30+а, т.к. а+в=100, то а+(30+30+а)=100, а=20, следовательно, в=80 в равнобедренной трапеции диагонали образуют подобные треугольники (верхний с верхним основанием, и нижний с нижним основание) по двум углам, коэфициент подобия - а:в=20:80=1:4. следовательно, и высоты этих треугольников относятся как 1:4, возьмем за меньшую высоту у,  т.е. если вся высота 40, то 1у+4у=40, у=8
Не нашли ответ?
Ответить на вопрос
Похожие вопросы