Первые члены арифметической и геометрической прогрессий равны 3. Второй член арифметической прогрессии на 6 больше второго члена геометрической, а третьи члены этих прогрессий вновь равны. Найдите эти прогрессии, если все их чл...

Первые члены арифметической и геометрической прогрессий равны 3. Второй член арифметической прогрессии на 6 больше второго члена геометрической, а третьи члены этих прогрессий вновь равны. Найдите эти прогрессии, если все их члены положительны. 
Гость
Ответ(ы) на вопрос:
Гость
Пусть а(n) - n-член арифметической прогрессии b(n) - n-член геометической прогрессии по формулам прогрессий а(n)=а(1)+d*(n-1) для арифметической b(n)=b(1)*[latex]q ^{n-1} [/latex] для геометрической имеем а(1)=3  a(2)=3+d  a(3)=3+2*d b(1)=3  b(2)=3*q    b(2)=3*q² из условия задачи имеем a(2)=b(2)+6 a(3)=b(3) т.е 3+d=3*q+6    отсюда d=3*q+3 3+2*d=3*q² подставим сюда значение d из предыдущего равенства, получим 3+6*q+6=3*q² или 3q²-6*q-9=0 (разделив обе части уравнения на 3, получим q²-2*q-3=0) решим полученное квадратное уравнение q(1)=3 q(2)=-1 т.к. d=3*q+3 d(1)=12  d(2)=0 проверим при q=-1 и d=0 a(2)=3 b(2)=1/3, что не удовлетворяет условию задачи при q=3  и d=12 имеем  a(2)=3+12*1=15 q(2)=3*3=9 и a(2)-b(2)=6; a(3)=3+12*2=27 b(3)=3*3²=27 и a(3)=b(3), что удовлетворяет условию задачи Окончательно имеем формула арифметической прогрессии a(n)=3+12*(n-1) формула геометической прогрессии b(n)=3*[latex]3 ^{n-1} [/latex]
Не нашли ответ?
Ответить на вопрос
Похожие вопросы