Площади двух равносторонних треугольников относятся как 4:9. Как относится высота меньшего треугольника к стороне большего?

Площади двух равносторонних треугольников относятся как 4:9. Как относится высота меньшего треугольника к стороне большего?
Гость
Ответ(ы) на вопрос:
Гость
Отношение площадей S₁/S₂=k², где k - коэффициент подобия сторон. Тогда отношение сторон a₁/a₂=k=√(4/9)=2/3 Найдем высоту в меньшем треугольнике.  Т.к. она также является медианой, то получим:  h=√(a₁²-(a₁/2)²)=√(a₁²-a₁²/4)=√(3a₁²/4)=(a₁√3)/2 a₁=2h/√3 Значит, a₁/a₂=2h/a₂√3=2/3 h/a₂=2√3/(3*2)=√3/3
Не нашли ответ?
Ответить на вопрос
Похожие вопросы