Подробно, если можно. На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом. 1. Строится двоичная запись числа N. 2. К этой записи дописывается справа ещё два разряда по следующ...
Подробно, если можно.
На вход алгоритма подаётся натуральное число N. Алгоритм строит по нему новое число R следующим образом.
1. Строится двоичная запись числа N.
2. К этой записи дописывается справа ещё два разряда по следующему правилу:
а) складываются все цифры двоичной записи, и остаток от деления суммы на 2 дописывается в конец числа(справа). Например, запись 10000 преобразуется в запись 100001;
б) над этой записью производятся те же действия - справа дописывается остаток от деления суммы цифр на 2.
полученная таким образом запись(в ней на два разряда больше, чем в записи исходного числа N) является двоичной записью искомого числа R.
Укажите такое наименьшее число N, для которого результат работы алгоритма больше 77. В ответе это число запишите в десятичной системе счисления.
Ответ(ы) на вопрос:
Гость
Очевидно, двоичная запись числа R оканчивается либо на 00, либо на 10 (если число единиц в N четное, то прибавление 0 ничего не меняет; нечетное - становится четным после добавление одной единицы)
Предлагаю найти двоичную запись числа 77 и, перебирая числа больше 77 смотреть, какие из них могут быть получены в результате работы алгоритма
77 = 64 + 8 + 4 + 1 = 1001101_2
78 = 1001110_2 - может быть получено из числа 10011_2 = 19
Ответ: 19
Не нашли ответ?
Похожие вопросы