Полная поверхность правильной шестиугольной призмы вдвое больше боковой. Вычислить отношение длины бокового ребра к длине ребра основания

Полная поверхность правильной шестиугольной призмы вдвое больше боковой. Вычислить отношение длины бокового ребра к длине ребра основания
Гость
Ответ(ы) на вопрос:
Гость
Отношение площади основания к площади боковой поверхности равно косинусу угла наклона боковых граней (все грани равнонаклонены). Поэтому угол между апофемой и радиусом r вписанной в шестиугольник окружности равен 60 градусов. Поэтому апофема в 2 раза больше этого радиуса. А высота пирамиды равна H = r*tg(60). Далее, сторона шестиугольника a (и радиус описанной окружности R заодно) равна a = R = r/sin(60).  Обозначим угол наклона бокового ребра к основанию Ф. Тогда H/R = tg(Ф) = tg(60)*sin(60) = 3/2; а нам надо вычислить 1/cos(Ф). Легко сосчитать, что это корень(13)/2.    как считать? а вот проще всего так- берем прмоугольный треугольник с катетами 2 и 3, тогда гипотенуза корень(13), и 1/cos(Ф) = корень(13)/2;      
Не нашли ответ?
Ответить на вопрос
Похожие вопросы