Помоги пожалуйста! Геометрия 10 класс(((( В треугольнике АВС АС=СВ=8, угол АСВ=130°. Точка М удалена от плоскости АВС на расстояние, равное 12, и находится на равном расстоянии от вершин треугольника АВС. Найдите угол между МА ...

Помоги пожалуйста! Геометрия 10 класс(((( В треугольнике АВС АС=СВ=8, угол АСВ=130°. Точка М удалена от плоскости АВС на расстояние, равное 12, и находится на равном расстоянии от вершин треугольника АВС. Найдите угол между МА и плоскостью АВС
Гость
Ответ(ы) на вопрос:
Гость
пусть О - центр описанной окружности треугольника АВС . ОМ - перпендикуляр к плоскости АВС. Тогда М равноудалена от А В и С. найдём радиус описанной окружности. он для равнобедренного треугольника равен R= a^2/√(4a^2-b^2) b найдём по теореме косинусов b^2=2a^2-2a^2cos(130) R=8^2/√(4*8^2-28^2+28^2cos(130)) tg(искомого угла)= 12/R = 12* √(4*8^2-28^2+28^2cos(130))/64 Если в условии угол все же 120 гр . Тогда cos (120)=-1/2 b^2=192 R=8 tg(искомого угла)=3/2 искомый угол = arctg(3/2)
Не нашли ответ?
Ответить на вопрос
Похожие вопросы