Помогите геометрия В окружность вписан равносторонний треугольник ABCABC. На дуге ACAC взята произвольная точка MM. Длины отрезков MAMA и MBMB соответственно равны 22 и 10. Найдите длину MCMC.

Помогите геометрия В окружность вписан равносторонний треугольник ABCABC. На дуге ACAC взята произвольная точка MM. Длины отрезков MAMA и MBMB соответственно равны 22 и 10. Найдите длину MCMC.
Гость
Ответ(ы) на вопрос:
Гость
Теорема косинусов для треугольника AМC AC^2=AM^2+MC^2-2*AM*CM*cosAMC   Теорема косинусов для треугольника BМC BC^2=BM^2+MC^2-2*BM*CM*cosBMC   AC=BC (треугольник равносторонний) Тогда AC^2=BC^2   AM^2+MC^2-2*AM*CM*cosAMC=BM^2+MC^2-2*BM*CM*cosBMC AM^2-2*AM*CM*cosAMC=BM^2-2*BM*CM*cosBMC   АМ и ВM знаем 22^2-2*22*CM*cosAMC=10^2-2*1010*CM*cosBMC 484-44*CM*cosAMC=100-20*CM*cosBMC   Углы ВМС и ВАС равны, опираются на одну дугу. ВАС=60 - равносторонний треугольник. Угол АМС=АМВ+ВМС=АСВ+ВАС=60+60=120   484-44*CM*cos120=100-20*CM*cos60 484-44*CM*(-1/2)=100-20*CM*1/2 484+22*CM=100-10*CM 32*CM=-384 СМ=нет (отрицательное)
Не нашли ответ?
Ответить на вопрос
Похожие вопросы