Помогите найти площадь криволинейной фигуры, ограниченной параболой и кривой. y= -x^2+4x-1, y= -x-1. Надо подробное решение, график не надо, сама построю. Заранее спасибо)

Помогите найти площадь криволинейной фигуры, ограниченной параболой и кривой. y= -x^2+4x-1, y= -x-1. Надо подробное решение, график не надо, сама построю. Заранее спасибо)
Гость
Ответ(ы) на вопрос:
Гость
Определённому интегралу геометрически соответствует площадь некоторой фигуры. Для начала лучше начертить чертёж, по нему можно найти точки пересечения линий. Хотя можно найти их и по другому. Решаем уравнение: -x²+4x-1=-x-1 -x²+4x-1+x+1=0 -x²+5x=0 x(5-x)=0 x=0   5-x=0          x=5 Нашли верхний 5 и нижний 0 пределы интегрирования. Если на отрезке [a;b] некоторая функция f(x) больше или равна некоторой функции g(x), то площадь фигуры, ограниченной графиками данных функций и прямыми х=а и x=b, можно найти по формуле: [latex]S= \int\limits^a_b {(f(x)-g(x))} \, dx [/latex] В нашем примере парабола расположена выше прямой -x-1 [latex]S= \int\limits^5_0 {(-x^2+4x-1-(-x-1))} \, dx= \int\limits^5_0 {(-x^2+5x)} \, dx= [/latex] [latex]=- \frac{x^3}{3}+ \frac{5x^2}{2}=- \frac{5^3}{3}+ \frac{5*5^2}{2} +0-0=- \frac{125}{3}+ \frac{125}{2}= \frac{-250+375}{6}=20 \frac{5}{6} [/latex] Ответ: S=20(5/6) ед²
Не нашли ответ?
Ответить на вопрос
Похожие вопросы