Помогите(( основания равнобедренной трапеции равны 11 и 23 ,площадь 136 найдите боковую сторону

Помогите(( основания равнобедренной трапеции равны 11 и 23 ,площадь 136 найдите боковую сторону
Гость
Ответ(ы) на вопрос:
Гость
a=11;b=23;S=136;с-боковая сторона; дополнительное построение:из вершин меньшего основания опустить перпендикуляры на большее основание. S=(a+b)/2·h;⇒h=2S/(a+b); h=2·136/(11+23)=8; (b-a)/2=(23-11)/2=6; По теореме Пифагора:c²=[(b-a)/2]²+h²;⇒ c²=6²+8²=36+64=100;⇒ c=√100=10;
Гость
Дано: Трапеция ABCD. BC = 11, AD = 23. AB = CD. S = 136. Решение: 1.) Проведем 2 высоты - DH и CT. Они равны, т.к. обе перпендикулярны одной стороне AD. Т.к. трапеция равнобедренная, угл A = углу D. Следовательно, прямоугольные треугольники ABH и CDT равны по катету и острому углу, а след. AH = TD. 2.) AH = TD по доказанному. Т.к. BC = HT, след AH = TD = (23 - 11)/2 = 6 3. ) Площадь трапеции = ((BC + AD)/2 )*h = ((23 + 11)/2)* h = 17*h (h - высота) 4. ) S = 17*h, а по условию S = 136. Составляем уравнение - 136 = 17*h, h = 8 5. ) Рассмотрим прямоугольный треугольник ABH. AH = 6 по доказанному. BH = 8 по доказанному. По теореме Пифагора AB^2 = BH^2 + AH^2. Составим уравнение, где X = AB.    X^2 = 6^2 + 8^2. X^2 = 36 + 64. X^2 = 100. X = 10 Следовательно, боковая сторона трапеции = 10
Не нашли ответ?
Ответить на вопрос
Похожие вопросы