Ответ(ы) на вопрос:
[latex] \frac{144^{2m+3}}{6^{4m+4}*4^{2m+3}}= \frac{144^{2m}*144^{3}}{6^{4m}*6^{4}*4^{2m}*4^{3}}= \frac{144^{2m}*144^{3}}{6^{2*2m}*4^{2m}*6^{4}*4^{3}}= \frac{144^{2m}*144^{3}}{36^{2m}*4^{2m}*6*6^{3}*4^{3}}=[/latex]
[latex]= \frac{(36*4)^{2m}*144^{3}}{(36*4)^{2m}*6*(6*4)^{3}}= \frac{144^{3}}{6*(6*4)^{3}}= \frac{1}{6}* (\frac{144}{6*4} )^3 = \frac{1}{6}* (\frac{6*6*4}{6*4} )^3= \frac{1}{6} * \frac{6^3}{1} =[/latex]
[latex]=6^{3-1}=6^2=36[/latex]
--------
[latex](1 \frac{7}{9} )^6* \frac{6^{15}}{8^{11}} =(\frac{1*9+7}{9} )^6* \frac{6^{15}}{8^{11}} =(\frac{16}{3^2} )^6* \frac{6^{15}}{8^{11}} =(\frac{2^4}{3^2} )^6* \frac{(2*3)^{15}}{(2^3)^{11}} =[/latex]
[latex]=\frac{2^{4*6}}{3^{2*6}}* \frac{2^{15}*3^{15}}{2^{3*11}}=\frac{2^{24}}{3^{12}}* \frac{2^{15}*3^{15}}{2^{33}}=\frac{2^{24}*2^{15}*3^{15}}{3^{12}*2^{33}}=\frac{2^{24+15}*3^{15}}{3^{12}*2^{33}} = \frac{2^{39}}{2^{33}}* \frac{3^{15}}{3^{12}}=[/latex]
[latex]=\frac{2^{39}}{2^{33}}* \frac{3^{15}}{3^{12}}=2^{39-33}*3^{15-12}=2^6*3^3=64*27=1728[/latex]
Не нашли ответ?
Похожие вопросы