Помогите пжл y=x^3/ 1-x^2 применение производной к исследованию функции хорошо будет если решите на листочке и скинете фотку)
Помогите пжл
y=x^3/ 1-x^2
применение производной к исследованию функции
хорошо будет если решите на листочке и скинете фотку)
Ответ(ы) на вопрос:
Гость
ДАНО
[latex]Y= \frac{x^3}{1-x^2} [/latex]
ИССЛЕДОВАНИЕ
Для наглядности вопроса сразу рассмотри график как функции (красная линия), так и её производной (синяя линия).
1. Область определения.
Знаменатель не равен 0.
1-х² ≠0 или х ≠ +/- 1 - точки разрыва.
Х∈(-∞,-1]∪[-1,+1]∪[+1,+∞)
2. Производная используется для поиска точек экстремума функции.
[latex]Y'= \frac{-x^2*(x^2-3)}{x^4-2x^2+1} [/latex]
То, что знаменатель равен (1-х)⁴ и функция имеет разрывы при х=+/- 1 нас не очень волнует.
Нас интересуют корни числителя - их должно быть четыре.
Из множителя = х² получаем два корня
х1 = х2 = 0.
Из множителя (х² - 3) получаем еще два корня.
х3 = - √3, х4 = √3. - точки экстремума
2. Функция возрастает где производная положительная.
УБЫВАЕТ Х∈(-∞,-√3]∪[√3,+∞).
ВОЗРАСТАЕТ Х∈[-√3,-1]∪[-1,+1]∪[1,√3]
Ymin(-√3) ~ -2.598
Ymax(√3) ~ 2.598
3. Точка перегиба - где два других корня Х= 0.
В этой точке равна 0 и вторая производная.
Не нашли ответ?
Похожие вопросы