Ответ(ы) на вопрос:
1) [latex] \left \{ {{x^2-9 \geq 0} \atop {-x \geq 0}} \right. \\\ \left \{ {{x \leq -3; \ x \geq 3} \atop {x \leq 0}} \right. \\\ D(y): \ x \leq -3[/latex]
2) [latex] \left \{ {{-x^2-10x+1 \leq 1-4x} \atop {x^2+2x-44 \leq 4x+4}} \right. \\\ \left \{ {{-x^2-6x \leq 0} \atop {x^2-2x-48 \leq 0}} \right. \\\ \left \{ {{x(x+6) \geq 0} \atop {(x-8)(x+6) \leq 0}} \right. \\\ \left \{ {{x \leq -6; \ x \geq 0} \atop {-6 \leq x \leq 8}} \right. \\\ x\in(-6)\cup[0; \ 8][/latex]
3) [latex] \left \{ {{-x^2+14x-38 \geq x+4} \atop {-x^2+5x-3 \geq -x-3}} \right. \\\ \left \{ {{x^2-13x+42 \leq 0} \atop {x^2-6x \leq 0}} \right. \\\ \left \{ {{(x-6)(x-7) \leq 0} \atop {x(x-6) \leq 0}} \right. \\\ \left \{ {{6 \leq x \leq 7} \atop {0 \leq x \leq 6}} \right. \\\ x=6[/latex]
4) [latex]x^2-3x+2 \geq 0 \\\ x \geq 0 \\\ 3-x>0[/latex]
[latex]1 \leq x \leq 2 \\\ x \geq 0 \\\ x<3[/latex]
[latex]1 \leq x \leq 2[/latex]
Не нашли ответ?
Похожие вопросы