Помогите решить интегралы . 4 любых задания. это прям очень срочно
Помогите решить интегралы . 4 любых задания. это прям очень срочно
Ответ(ы) на вопрос:
Гость
[latex]\displaystyle \int\limits { \frac{\big( \frac{1}{x} -5\big)^2}{ \sqrt{x} } } \, dx =\displaystyle \int\limits { \frac{(1-5x)^2}{x^2 \sqrt{x} } } \, dx =\displaystyle \int\limits { \frac{25x^2-10x+1}{x^2 \sqrt{x} } } \, dx \,\,\boxed{=}[/latex]
Поделим почленно:
[latex]\boxed{=}\,\,\displaystyle \int\limits {\bigg( \frac{25x^2}{x^2 \sqrt{x} } - \frac{10x}{x^2 \sqrt{x} } + \frac{1}{x^2 \sqrt{x} } \bigg)} \, dx =\displaystyle \int\limits { \frac{25}{ \sqrt{x} } } \, dx -\displaystyle \int\limits { \frac{10}{x \sqrt{x} } } \, dx +\displaystyle \int\limits {\frac{1}{x^2\sqrt{x}}} \, dx =[/latex]
[latex]=50 \sqrt{x} -10\cdot\bigg(- \dfrac{2}{ \sqrt{x} } \bigg)- \dfrac{2}{3x \sqrt{x} } +C=50 \sqrt{x} + \dfrac{20}{ \sqrt{x} } - \dfrac{2}{3x \sqrt{x} } +C[/latex]
[latex]\displaystyle \int\limits {\big(1-6x\big)} \, dx =x-3x^2+C[/latex]
2. Найдем производную функции [latex]F(x)[/latex]
[latex]F'(x)=(3x^5-\sin^2x+2)=15x^4-2\sin x\cos x=15x^4-\sin2x[/latex]
Нет, не является первообразной.
3.
[latex]f(x)=x^5-\cos x[/latex], тогда первообразная:
[latex]F(x)=\displaystyle \int\limits {\big(x^5-\cos x\big)} \, dx = \dfrac{x^6}{6} -\sin x+C[/latex]
[latex]f(x)=2+ \dfrac{3}{\sin^2 x} [/latex], тогда первообразная будет иметь вид:
[latex]F(x)=\displaystyle \int\limits {\bigg(2+ \frac{3}{\sin^2x} \bigg)} \, dx =2x- \frac{3}{tg x} +C[/latex]
[latex]\displaystyle \int\limits^{ \sqrt{3} }_{0} { \sqrt{x} } \, dx =\displaystyle\int\limits ^{ \sqrt{3} }_{0}{x^\big{ \frac{1}{2} }} \, dx = \dfrac{2x^\big{ \frac{3}{2} }}{3} \bigg|^{ \sqrt{3}}_{0}= \frac{2 \sqrt{\big( \sqrt{3}\big )^3} }{3} = \frac{2 \sqrt[4]{3} }{ \sqrt{3} } [/latex]
Не нашли ответ?
Похожие вопросы