Помогите решить неравенство, пожалуйста, с понятным объяснением. Заранее спасибо ;3

Помогите решить неравенство, пожалуйста, с понятным объяснением. Заранее спасибо ;3
Гость
Ответ(ы) на вопрос:
Гость
ОДЗ: x^2>0⇔x≠0; x^2≠1⇔x≠1; x≠ - 1 4x+5>0⇔x> - 5/4; sin^2 x >0⇔sin x≠0 (sin^4 x>0 дает то же ограничение)⇔ x≠πn, n∈Z; sin^4 x≠1⇔sin x≠1; sin x≠ - 1⇔x≠ π/2+πn, n∈Z Воспользовавшись двумя формулами  log_a b=1/(log_b a) (если b≠1; про остальные условия: a>0; b> 0; a≠1 я здесь не упоминаю, они предполагаются выполненными, раз написан левай логарифм)       и log_a^2 b=(1/2)log_|a| b= (1/2)log_a b (последнее  если a>o), приводим неравенство к виду (1/2)(log_(sin^2 x)(4x+5))/(log_(sin^2 x) x^2)≥1/2, после чего формула перехода к новому основанию приводит к неравенству log_(x^2)(4x+5)≥1⇔log_(x^2)(4x+5)≥log_(x^2) (x^2), которое на ОДЗ равносильно неравенству (x^2-1)(4x+5-x^2)≥0 (в общем виде log_a b≥log_a c⇔ на ОДЗ  (a-1)(b-c)≥0). Далее: (x-1)(x+1)^2(x-5)≤0, метод интервалов приводит к x∈{- 1}∪[1;5]. Остается пересечь с ОДЗ. Ответ: x∈(1;π/2)∪(π/2;π)∪(π;3π/2)∪(3π/2;5]
Не нашли ответ?
Ответить на вопрос
Похожие вопросы