Помогите решить sin (8*x-pi/6)=sinx

Помогите решить sin (8*x-pi/6)=sinx
Гость
Ответ(ы) на вопрос:
Гость
2sin(7x/2-π/12)cos(6x/2-π/12)=0 sin(7x/2-π/12)=0 7x/2-π/12=πn,n∈z 7x/2=π/12+πn,n∈z x=π/42+2πn/7,n∈z sin(9x/2-π/12)=0 9x/2-π/12=πk,k∈z 9x/2=π/12+πk,k∈z x=π/54+2πk/9,k∈z
Гость
 sin (8*x-π/6)=sinx ;sin (8*x-π/6)- sinx  =0 ; 2sin(7x/2 -π/12)*cos(9x/2- -π/12) =0 ; а) sin(7x/2 -π/12) =0 ; 7x/2 -π/12= π*n ; x =π/42+ 2πn/7 ,n∈Z. --- б) cos(9x/2 - π/12) =0  ; 9x/2  - π/12 =π/2+π*n ; x = 7π/54 +2πn/9,  n∈Z.  ответ : π/42+ 2πn/7  , 7π/54 +2πn/9 , n∈Z.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы