Помогите с 3 задачами по математике они во вложениях

Помогите с 3 задачами по математике они во вложениях
Гость
Ответ(ы) на вопрос:
Гость
1) Это по сути вопрос о равнобочной трапеции - боковой грани пирамиды. Основания 10 см и 4 см, высота 4 см, найти боковую сторону. Проводим две высоты из верхних углов на нижнее основание. Нижнее основание разбивается на отрезки 3, 4, 3 см. Отрезок 3 см, высота 4 см и боковая сторона образуют прямоугольный треугольник. Его катеты 3 см и 4 см, гипотенуза (боковая) равна 5 см. 2) Тоже самое, только речь идет не о боковой грани, а о диагональном сечении. Это тоже равнобочная трапеция. Основания пирамиды - квадраты со сторонами 10 см и 2 см, значит, их диагонали равны 10√2 см и 2√2 см. Это основания трапеции. Высота трапеции равна высоте пирамиды H см. Проводим две высоты, они разбивают нижнее основание на отрезки 4√2 см, 2√2 см, 4√2 см. Отрезок 4√2 см, высота H см и боковая сторона 26 см образуют прямоугольный треугольник. H = √(26^2 - (4√2)^2) = √(676 - 16*2) = √644 3) Тут также, как во 2), только пирамида треугольная. Поэтому сечение пройдет через высоты (они же медианы и биссектрисы) оснований. У равностороннего треугольника со стороной 10 см высота равна 5√3 см. У равностороннего треугольника со стороной 40 см высота равна 20√3 см. Это основания трапеции. Она не равнобочная - одна боковая сторона - это ребро, вторая - апофема. Опять проводим две высоты трапеции. Они делят нижнее основание на отрезки 10√3 см, 5√3 см, 5√3 см. Отрезок 10√3 см, высота 10 см и боковое ребро образуют прямоугольный треугольник. b = √((10√3)^2 + 10^2) = √(100*3 + 100) = √400 = 20 см.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы