Помогите срочно надо решить две задачи!! 1. EBPK - квадрат. Точка M - не принадлежащая плоскости EBP, MB=MK. Докажите, что KB⊥EMP 2. Прямая MA перпендикулярна к плоскости квадрата ABCD. Докажите, что треугольник MBC - прямоуго...
Помогите срочно надо решить две задачи!! 1. EBPK - квадрат. Точка M - не принадлежащая плоскости EBP, MB=MK. Докажите, что KB⊥EMP 2. Прямая MA перпендикулярна к плоскости квадрата ABCD. Докажите, что треугольник MBC - прямоугольный с гипотенузой MC.Заранее Спасибо !!)
Ответ(ы) на вопрос:
лови
1) пусть H- основание перпендикуляра опущенного из М на плоскость ЕВК, по гипотенузам и общему катету треугольники МВH,MKH-конгруентны, а значит BH=KH, значит вершина равнобедренного тругольника ВМК лежит на серединном перпендикуляре к ВК, т.е на диагонали ЕP таким образом МH , перпендикулярная всей плоскости ЕВК и прямой ВК в частности принадлежит EMP, вторая прямая перпендикулярная BK- это сама ЕP, по двум прямым, вся плоскость ЕМP перпендикулярна ВК...
2) сторона ВС перпендикулярна АВ и кроме того МА- по условю задачи, значит ВС перпендикулярна всей плоскости МАВ и отрезку МВ в частности, что и доказывает требуемое...
Не нашли ответ?
Похожие вопросы