Пожалуйста помогите с алгеброй(7 класс).Очень прошу объясните как это делать . Известно,что прямая y=-2x-1 касается параболы y= x^2 в точке с координатами x=-1,y=1. Напишите уравнение прямой,касательной к параболе x= y^2 в точк...

Пожалуйста помогите с алгеброй(7 класс).Очень прошу объясните как это делать . Известно,что прямая y=-2x-1 касается параболы y= x^2 в точке с координатами x=-1,y=1. Напишите уравнение прямой,касательной к параболе x= y^2 в точке с координатами x=1, y=-1.Буду очень благодарна.
Гость
Ответ(ы) на вопрос:
Гость
(График немного неправильный. Когда я его рисовал, то у меня зачело в голову, что точка касания это (1;1). Загрузить другой не могу с телефона) Давайте повернем систему координат на 90° против часовой стрелки. Тогда график х = у² будет выглядеть так же как и график у = х², но в привычной системе координат. Так как касательная имеет вид у = -2х - 1, то и у нашей новой касательной коэффициенты k и b будут иметь модули 2 и 1 соответственно. Ясно, что b = -1, так как прямую надо "спустить" вниз. А вот теперь загвоздка с k. По идее надо взять 2, так как наша касательная проходит справа от графика. Но нет. Нужно взять именно 2, так как при повороте системы координат ось Оу направилась влево, значит коэффициент k надо сменить на противоположный. Всё. Получили уравнение х = -2у - 1. Выразим у: у = -½х - ½
Гость
Уравнение касательной для функции в заданной точке: Xk=x₀+x`(x₀)*(y-x₀) x=y²   y₀=-1 x₀=x(-1)=(-1)²=1 x`(-1)=2y=2*(-1)=-2   ⇒ Xk=1+(-2)*(x-(-1)=1-2*(x+1)=1-2y-2=-2y-1=-(2y+1). Xk=-(2y+1). Или более лёгкий вариант: y=x²   Yk=-2x-1 x=y²   Xk - ? Поменям местами х и у в уравнении касательной и получаем:  Xk=-2у-1=-(2y+1). Xk=-(2y+1).
Не нашли ответ?
Ответить на вопрос
Похожие вопросы