ПОЖАЛУЙСТА СРООЧНО ПОМОГИТЕ!!BM-медиана треугольника ABC площадью 120 см^2. точка E середина медианы BM. луч AE пересекает сторону BC в точке K . найдите площадь четырехугольника MEKC

ПОЖАЛУЙСТА СРООЧНО ПОМОГИТЕ!!BM-медиана треугольника ABC площадью 120 см^2. точка E середина медианы BM. луч AE пересекает сторону BC в точке K . найдите площадь четырехугольника MEKC
Гость
Ответ(ы) на вопрос:
Гость
Проведём из точки М параллельно ЕК линию до пересечения с ВС, назовём точка Т. Имеем ЕК   - это средняя линия треугольника МВТ. ВК = ТК.  Обозначим  площадь  треугольника ЕВК    -  S. площадь  треугольника ЕКС = 2S т.к. высота у треугольников одинакова, а основание в 2 раза больше площадь тругольника СЕВ = 3S  и  равна площади треугольника СЕМ, т.к. треугольники имеют одно основание и одну высоту, проведённую  из точки С. Площадь четырёхугольника МЕКС равна  3S + 2S = 5S (складывается из площадей треугольников ЕКС  и  МЕС) Теперь вспомним, что медиана ВМ разделила площадь треугольника АВС на две равные части, т. е.  120 кв.см./ 2 = 60 кв.см. Площадь треугольника МВС = 60 кв.см. и она же составляет  6 S/ А искомая площадь четырёхугольника  равна: 60 кв.см. / 6S x 5S = 50 кв.см.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы