При каких значениях параметра К корни уравнения х^2-(К+1)х+4+К=0 отрицательны?
При каких значениях параметра К корни уравнения
х^2-(К+1)х+4+К=0 отрицательны?
Ответ(ы) на вопрос:
Гость
1. Найдем все значения k, при которых данное уравнение имеет действительные корни, то есть найдем все k, для которых D = b² - 4ac≥0:
D = (-(k+1))² - 4 * 1 * (4 + k) = k² - 2k - 15
k² - 2k - 15 ≥ 0
Корни уравнения k² - 2k - 15 = 0:
k1 = -3
k2 = 5
+ - +
-------|-------------|--------
-3 5
=> k ∈(-∞, -3) ∪(5;∞)
2. По теореме Виета
[latex] \left \{ {{x1*x2 = 4 + k} \atop {x1 + x2 = k + 1}} \right. [/latex]
Из того, что оба корня отрицательны следует, что произведение их положительно, а сумма отрицательна, то есть
[latex]\left \{ {{x1*x2 \ \textgreater \ 0} \atop {x1 + x2 \ \textless \ 0}} \right.[/latex]
[latex]\left \{ {{ 4 + k \ \textgreater \ 0} \atop {k + 1 \ \textless \ 0}} \right.[/latex]
[latex]\left \{ {{ k \ \textgreater \ -4} \atop {k \ \textless \ -1}} \right.[/latex]
k ∈ (-4; -1)
Учитывая 1 и 2, получим: k ∈ (-4; -3).
Ответ: k∈(-4; -3).
Не нашли ответ?
Похожие вопросы