Радиус сферы, описанной около правильной четырехугольной призмы, равен R. Найдите высоту этой призмы, зная, что ее диагональ образует с боковой гранью угол a.

Радиус сферы, описанной около правильной четырехугольной призмы, равен R. Найдите высоту этой призмы, зная, что ее диагональ образует с боковой гранью угол a.
Гость
Ответ(ы) на вопрос:
Гость
рассмотрим диагональное сечение призмы, оно будет представлять из себя прямоугольник вписанный в окружность радиуса R, так как диагональ призмы будет являться его диаметром , то D = 2R угол, который образует диагональ призмы с боковой гранью, равен углу, который образует диагональ призмы с диагональю боковой грани (так как последняя является ее ортогональной проекцией)  теперь рассмотрим сечение призмы плоскостью, проходящей черз диагональ призмы и диагональ боковой грани призмы : это сечение - прям. треугольник. находим диагональ боковой грани: d = cosα * D = 2R* cosα находим ребро основания из того же прямоуг. треугольника: l = sinα * D = 2R * sinα высота нашей призмы равна боковой грани, а ее мы можем найти пот. Пифагора, зная d и l: h = √ (d² - l²) =√(4R² *cos²α - 4R²* sin²α) = 2R√(cos²α - sin²α)
Не нашли ответ?
Ответить на вопрос
Похожие вопросы