Расставьте в клетках квадрата 5х5 различные натуральные числа так, чтобы их суммы в каждой строке и в каждом столбце были равны между собой и (при этом условии) как можно меньшими. На одной из диагоналей уже стоят числа 1, 2, 3...

Расставьте в клетках квадрата 5х5 различные натуральные числа так, чтобы их суммы в каждой строке и в каждом столбце были равны между собой и (при этом условии) как можно меньшими. На одной из диагоналей уже стоят числа 1, 2, 3, 4 и 2015(повторно их использовать нельзя).
Гость
Ответ(ы) на вопрос:
Гость
Самый наилегчайший вариант при заполнении таких квадратов- это нахождение наименьшей возможной суммы по вертикали и горизонтали. Так как мы можем лишь раз использовать числа, то наименьшими оставшимися у нас будут 5,6,7,8,9,10,11,12, которые нам надо соединить с имеющимся 2015. раскладываем эти числа на две суммы равные , получается 5+8+9+12 и 6+7+10+11. Вписываем их в любом порядке либо в верхнюю строчку, либо в правый столбец, чтобы вершиной было число 2015. Часть мы уже заполнили, сумма в каждом столбце и строчке у нас будет равняться 2049. Начинаем постепенно, по принципу судоку заполнять столбцы подходящими числами, не повторяющимися. Существует множество вариантов правильного заполнения, чтобы соблюдались все условия. У меня правильным получился только 6 квадрат )))) Привожу его тут   5         8      9       12   2015 540    500   999    4       6 493    545    3     1001    7 1010    2     25    1002  10 1        994  1013    30    11
Не нашли ответ?
Ответить на вопрос
Похожие вопросы