Решить систему {x^4 - y^4 = 15, x^3 y - x y^3 = 6}

Решить систему {x^4 - y^4 = 15, x^3 y - x y^3 = 6}
Гость
Ответ(ы) на вопрос:
Гость
Первое уравнение преобразовываем так: (x²-y²)(x²+y²)=15 Во втором уравнении выносим за скобку xy: xy(x²-y²)=6 (x²-y²)=6/xy Подставляем x²-y² в первое уравнение: 6(x²+y²)/xy=15 (x²+y²)/xy=15/6 Делим числитель и знаменатель на xy: x/y+y/x=15/6 Проводим замену: x/y=t t+1/t=15/6 6t²-15t+6=0 Решаем через дискриминант и получаем корни: t=x/y=1/2 t=x/y=2 Отсюда либо y=2x либо x=2y 1 случай. Подставляем y=2x в уравнение xy(x²-y²)=6: 2x²(x²-4x²)=6 x⁴=-1 Действительных корней нет. 2 случай. Подставляем x=2y в уравнение xy(x²-y²)=6: 2y²(4y²-y²)=6 y⁴=1 y₁,₂=±1 Тогда x₁,₂=2y=±2 Ответ: (±1; ±2)
Не нашли ответ?
Ответить на вопрос
Похожие вопросы