Решить уравнение 3cosx+2tgx=0

Решить уравнение 3cosx+2tgx=0
Гость
Ответ(ы) на вопрос:
Гость
tgx=sinx / cosx Если cоsx - находится в знаменателе, то следует указать ОДЗ: cosx≠0 x≠(π/2)+πn, n∈Z решаем исходное уравнение: [latex]3cosx+2tgx=0 \\ \\ 3cosx+2 \frac{sinx}{cosx} =0\ |*cosx \\ \\ 3cos^2x+2sinx=0 \\ 3(1-sin^2x)+2sinx=0 \\ 3-3sin^2x+2sinx=0 \ |*(-1) \\ 3sin^2x-2sinx-3=0 \\ sinx=t, \ \ -1 \leq t \leq 1 \\ 3t^2-2t-3=0 \\ D=4+4*3*3=4+36=40 \\ \sqrt{D} = \sqrt{40} = \sqrt{4*10} =2 \sqrt{10} \\ \\ t= \frac{2^+_-2 \sqrt{10} }{2*3} =\frac{1^+_-\sqrt{10} }{3}[/latex] [latex]t= \frac{1+ \sqrt{10} }{3} \ \textgreater \ 1[/latex] , следовательно не удовлетворяет условию -1≤t≤1 [latex]t= \frac{1- \sqrt{10} }{3} \\ t=sinx \\ sinx= \frac{1- \sqrt{10} }{3} \\ \\ [/latex] [latex]x=(-1) ^{n} * \frac{1- \sqrt{10} }{3} + \pi n [/latex], n∈Z [latex]OTBET: (-1) ^{n} * \frac{1- \sqrt{10} }{3} + \pi n[/latex], n∈Z
Не нашли ответ?
Ответить на вопрос
Похожие вопросы