Решить задачу. В трапеции ABCD (АD||BC) биссектриса угла BAD пересекает сторону CD в точке М. Найдите длину отрезка АМ, если известно, что ВМ=8, ВС+АD=17,площади треугольников ACM и АDM равны
Решить задачу.
В трапеции ABCD (АD||BC) биссектриса угла BAD пересекает сторону CD в точке М. Найдите длину отрезка АМ, если известно, что ВМ=8, ВС+АD=17,площади треугольников ACM и АDM равны
Ответ(ы) на вопрос:
Гость
Биссектриса пересекает продолжение ВС в точке Е.
∆ АВЕ - равнобедренный ( ∠ВЕА=∠ЕАD как накрестлежащие,
а∠ ВАЕ =∠ЕАD – т.к. АЕ - биссектриса.)
S ∆ ACM=MC•h/2
S ∆ AMD=DM•h/2.
Высота из А у обоих треугольников общая, следовательно, СМ=DM
В ∆ МЕС и ∆ MAD по два равных накрестлежащих угла, равные вертикальные углы и СМ=DM.
Эти треугольники равны по 2-му признаку.⇒ АМ=ЕМ, СЕ=АD и ВЕ=ВС+АD=17.
Т.к. ∆ АВЕ равнобедренный, АВ=ВЕ=17.
В АВЕ М - середина основания АЕ, ВМ - его медиана и высота. ⇒
∆ АВМ - прямоугольный.
По т. Пифагора из ∆ АВМ катет АМ=√(BА²-BM²)=√(17²-8²)=15 ед. длины.
Не нашли ответ?
Похожие вопросы