Ответ(ы) на вопрос:
Гость
[latex]1)[/latex]
[latex] \left \{ {{3x-4\ \textgreater \ 9x-6} \atop {x-5 \leq 2x+4}} \right. [/latex]
[latex]\left \{ {{3x-9x\ \textgreater \ -6+4} \atop {x-2x \leq 4+5}} \right.[/latex]
[latex]\left \{ {{-6x\ \textgreater \ -2} \atop {-x \leq9}} \right.[/latex]
[latex]\left \{ {{x\ \textless \ \frac{1}{3} } \atop {x \geq -9}} \right.[/latex]
-----------[-9]-----------------
/////////////////////
--------------------(1/3)-------
///////////////////////////
[latex]x[/latex] ∈ [latex][-9; \frac{1}{3} )[/latex]
[latex]2)[/latex]
[latex] log_{ \frac{1}{2}}(3x+4) \leq -4[/latex]
ОДЗ:
[latex]3x+4\ \textgreater \ 0[/latex]
[latex]3x\ \textgreater \ -4[/latex]
[latex]x\ \textgreater \ -1 \frac{1}{3} [/latex]
[latex] log_{ \frac{1}{2}}(3x+4) \leq log_{ \frac{1}{2}}( \frac{1}{2}) ^{-4} [/latex]
[latex] log_{ \frac{1}{2}}(3x+4) \leq log_{ \frac{1}{2}}16[/latex]
[latex]3x+4 \geq 16[/latex]
[latex]3x \geq 16-4[/latex]
[latex]3x \geq 12[/latex]
[latex]x \geq4[/latex]
-----------------[4]---------------
/////////////////
Ответ: [latex][4;+[/latex] ∞ [latex])[/latex]
Не нашли ответ?
Похожие вопросы