Решите пожалуйстааа. x + y^2 + z^2 = y + x^2 + z^2 = z + x^2 + y^2

Решите пожалуйстааа. x + y^2 + z^2 = y + x^2 + z^2 = z + x^2 + y^2
Гость
Ответ(ы) на вопрос:
Гость
Из первого равенства. x+y²=y+x². (x-y)-(x²-y²)=0 <=> (x-y)[1-(x+y)]=0 <=> x=y либо x+y=1. x=y либо x=1-y Берем второе равенство. Из него будет следовать y=z либо y=1-z А из транзитного равенства будет следовать x=z либо x=1-z. Теперь начинаем перебирать. 1. Если x=y и y=z, то x=z. Соответственно (t,t,t) t∈R это первое множество решений. 2. Если  x=y, а y=1-z, то x=1-z. Соответственно (1-t,1-t,t) t∈R это второе множество решений. 3,4. Аналогичными переборами получаем еще два множества (1-t,t,1-t) и  (t,1-t,1-t)  t∈R. 2, 3 и 4 множества решений можно переписать в виде (t,t,1-t) (t,1-t,t) и (1-t,t,t) t∈R. В ответе имеем 4 множества решений: 1. (t,t,t) t∈R 2. (t,t,1-t) t∈R 3. (t,1-t,t) t∈R 4. (1-t,t,t) t∈R
Не нашли ответ?
Ответить на вопрос
Похожие вопросы