Решите тригонометрическое неравенство. sin(x+Pi/4) больше =1
Решите тригонометрическое неравенство. sin(x+Pi/4)>=1
Ответ(ы) на вопрос:
sin прости ещё не изучали я только в 6 классе
pi/4 - x/2 = (pi/2 - x)/2
Тангенс половинного угла по формуле tg a/2 = sin a / (1+ cos x)
sin((pi/2) - x) = cos x
cos((pi/2) - x) = sin x
Таким образом tg((pi/4)-(x/2)) = cos x / (1 + sin x)
Получилось sin x / (cos x * (1+sin x)/(1+sinx)) = tg x
Не нашли ответ?
Похожие вопросы